The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of CNS activity with repeated dosing

Author:

Slivicki Richard A.,Yi Jiwon,Brings Victoria E.,Huynh Phuong Nhu,Gereau Robert W.ORCID

Abstract

AbstractActivation of cannabinoid receptor type 1 (CB1) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB1 receptors is accompanied by unwanted side effects, such as tolerance and dependence. Efforts to develop novel analgesics have focused on targeting peripheral CB1 receptors to circumvent central CB1-related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB1-preferring agonist CB-13 on nociception and central CB1-related phenotypes in an inflammatory model of pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion (DRG) neurons. CB-13 reduced inflammation-induced mechanical allodynia in a peripheral CB1 receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse DRG neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E2, providing potential mechanistic explanations for the analgesic actions of peripheral CB1 receptor activation. With acute dosing, phenotypes associated with central CB1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB1 receptor dependence, even at a dose that did not produce central CB1 receptor-mediated phenotypes on acute dosing. This suggests repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3