The mitotic spindle mediates nuclear migration through an extremely narrow infection structure of the rice blast fungus Magnaporthe oryzae

Author:

Pfeifer Mariel A.,Khang Chang HyunORCID

Abstract

AbstractThe blast fungus, Magnaporthe oryzae, causes severe destruction to rice and other crops worldwide. As the fungus infects rice, it develops unique cellular structures, such as an appressorium and a narrow penetration peg, to permit successful invasion of host rice cells. Fundamental knowledge about these cellular structures and how organelles, such as the nucleus, are positioned within them is still emerging. Previous studies show that a single nucleus becomes highly stretched during movement through the narrow penetration peg in an extreme nuclear migration event. Yet, the mechanism permitting this nuclear migration event remains elusive. Here, we investigate the role of the mitotic spindle in mediating nuclear migration through the penetration peg. We find that disruption of spindle function during nuclear migration through the penetration peg prevents development of invasive hyphae and virulence on rice. Furthermore, regulated expression of conserved kinesin motor proteins, MoKin5 and MoKin14, is essential to form and maintain the spindle, as well as, properly nucleate the primary hypha. Overexpression of MoKin5 leads to formation of aberrant microtubule protrusions, which contributes to formation of nuclear fragments within the appressorium and primary hypha. Conversely, overexpression of MoKin14 causes the spindle to collapse leading to the formation of monopolar spindles. These results establish a mechanistic model towards understanding the intricate subcellular dynamics of extreme nuclear migration through the penetration peg, a critical step in the development of rice blast disease.ImportanceMagnaporthe oryzae, also known as the blast fungus, is a formidable hinderance to global food production, including rice. The destructive fungal pathogen develops highly-specialized cells and structures, such as appressoria and penetration pegs, to permit successful invasion of rice cells. Our understanding of M. oryzae’s fundamental biology during host cell invasion and colonization is still developing. For instance, it is not yet known how organelles, such as the nucleus, migrate through the narrow penetration peg. Moreover, few previous studies examine the role of motor proteins in M. oryzae. In this study, we determined that the mitotic spindle propels a single nucleus through the penetration peg to permit successful development of fungal hyphae inside the first-invaded rice cell. We also identified two conserved kinesin motor proteins, MoKin5 and MoKin14. Our analyses suggested that MoKin5 and MoKin14 exhibit canonical functions in M. oryzae during rice infection. This study addressed long-standing questions in rice blast biology, and our results offer opportunities for future research.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3