Linearised loop kinematics to study pathways between conformations

Author:

Hoevenaars Antonius G.L.ORCID,André IngemarORCID

Abstract

AbstractConformational changes are central to the function of many proteins. Characterization of these changes using molecular simulation requires methods to effectively sample pathways between protein conformational states. In this paper we present an iterative algorithm that samples conformational transitions in protein loops, referred to as the Jacobian-based Loop Transition (JaLT) algorithm. The method uses internal coordinates to minimise the sampling space, while Cartesian coordinates are used to maintain loop closure. Information from the two representations is combined to push sampling towards a desired target conformation. The innovation that enables the simultaneous use of Cartesian coordinates and internal coordinate is the linearisation of the inverse kinematics of a protein backbone. The algorithm uses the Rosetta all-atom energy function to steer sampling through low-energy regions and uses Rosetta’s side-chain energy minimiser to update side-chain conformations along the way. Because the JaLT algorithm combines a detailed energy function with a low-dimensional conformational space, it is positioned in between molecular dynamics (MD) and elastic network model (ENM) methods. As a proof of principle, we apply the JaLT algorithm to study the conformational transition between the open and occluded state in the MET20 loop of the Escherichia coli dihydrofolate reductase enzyme. Our results show that the algorithm generates semi-continuous pathways between the two states with realistic energy profiles. These pathways can be used to identify energy barriers along the transition. The effect of a single point mutation of the MET20 loop was also investigated and the predicted increase in energy barrier is consistent with the experimentally observed reduction in catalytic rate of the enzyme. Additionally, it is demonstrated how the JaLT algorithm can be used to identify dominant degrees of freedom during a transition. This can be valuable input for a more extensive characterization of the free energy pathway along a transition using molecular dynamics, which is often performed with a reduced set of degrees of freedom. This study has thereby provided the first examples of how linearisation of inverse kinematics can be applied to the analysis of proteins.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3