Mediodorsal thalamus is critical for updating during extra-dimensional shifts but not reversals in the attentional set-shifting task

Author:

Ouhaz ZakariaORCID,Perry Brook ALORCID,Nakamura KouichiORCID,Mitchell Anna SORCID

Abstract

AbstractCognitive flexibility, attributed to frontal cortex, is vital for navigating the complexities of everyday life. The mediodorsal thalamus (MD), interconnected to frontal cortex, may influence cognitive flexibility. Here male rats performed an attentional set-shifting task measuring intra-dimensional and extra-dimensional shifts in sensory discriminations. MD lesion rats needed more trials to learn the rewarded sensory dimension. However, once the choice response strategy was established, learning further two-choice discriminations in the same sensory dimension, and reversals of the reward contingencies in the same dimension, were unimpaired. Critically though, MD lesion rats were impaired during the extra-dimensional shift, when they must rapidly update the optimal choice response strategy. Behavioral analyses showed MD lesion rats had significantly reduced correct within trial second choice responses. This evidence shows transfer of information via the MD is critical when monitoring and rapid within trial updates in established choice response strategies are required after there is a rule change.Significance statementWe demonstrate for the first time that rodent mediodorsal (MD) thalamus is a critical node when choice response strategies need to change rapidly after a within session rule change but not after reversals of reward contingencies during reward guided learning. MD interactions with orbitofrontal cortex are critical for value based learning, while MD interactions with medial prefrontal cortex are critical for rapid within trial updating of optimal choice response rules. MD interactions with the orbitofrontal cortex are not always necessary for reversal learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3