Sun exposure drives Antarctic cryptoendolithic community structure and composition

Author:

Coleine Claudia,Stajich Jason E.ORCID,Zucconi Laura,Onofri Silvano,Selbmann Laura

Abstract

AbstractThe harsh environmental conditions of the ice-free regions of Continental Antarctica are considered one of the closest Martian analogues on Earth. There, rocks play a pivotal role as substratum for life and endolithism represents a primary habitat for microorganisms when external environmental conditions become incompatible with active life on rock surfaces. Due to the thermal inertia of rock, the internal airspace of lithic substratum is where microbiota find a protected and buffered microenvironment, allowing life to spread throughout these regions with extreme temperatures and low water availability. The high degree of adaptation and specialization of the endolithic communities makes them highly resistant but scarsely resilient to any external perturbation and thus, any shifts in microbial community composition may serve as early-alarm systems of environmental perturbation, including climate change.Previous research concluded that altitude and distance from sea do not play as driving factors in shaping microbial abundance and diversity, while sun exposure was hypothesized as significant parameter influencing endolithic settlement and development. This study aims to explore our hypothesis that changes in sun exposure translate to shifts in community composition and abundances of main biological compartments (fungi, algae and bacteria) in the Antarctic cryptoendolithic communities. We performed a preliminary molecular survey, based on DGGE and qPCR tecniques, of 48 rocks with varying sun exposure, collected in Victoria Land along an altitudinal transect from 834 to 3100 m a.s.l.Our findings demonstrate that differences in sun radiation between north and south exposure influence temperature of rocks surface, availability of water and metabolic activity and also have significant impact on community composition and microbial abundance.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3