A model of rapid homeostatic plasticity accounts for hidden, long-lasting changes in a neuronal circuit after exposure to high potassium

Author:

Rue Mara C.P.ORCID,Alonso LeandroORCID,Marder EveORCID

Abstract

AbstractNeural circuits must both function reliably and flexibly adapt to changes in their environment. We studied how both biological neurons and computational models respond to high potassium concentrations. Pyloric neurons of the crab stomatogastric ganglion (STG) initially become quiescent, then recover spiking activity in high potassium saline. The neurons retain this adaptation and recover more rapidly in subsequent high potassium applications, even after hours in control saline. We constructed a novel activity-dependent computational model that qualitatively captures these results. In this model, regulation of conductances is gated on and off depending on how far the neuron is from its target activity. This allows the model neuron to retain a trace of past perturbations even after it returns to its target activity in control conditions. Thus, perturbation, followed by recovery of normal activity, can hide cryptic changes in neuronal properties that are only revealed by subsequent perturbations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3