Abstract
AbstractVariational properties hold a fundamental role in shaping biological evolution, exerting control over the magnitude and direction of evolutionary change elicited by microevolutionary processes that sort variation, such as selection or drift. We studied the Tyrannus genus, as a model for examining the conditions and drivers that facilitate the repeated evolution of exaggerated, secondary sexual traits in the face of significant functional limitations. We study the role of allometry, sexual selection, and their interaction on the diversification of tail morphology in the genus, assessing whether and how they promoted or constrained phenotypic evolution. The exaggerated and functionally-constrained long feathers of deep-forked species, T. savana and T. forficatus, independently diverged from the rest of the genus following the same direction of main interspecific variation common to the entire cluster of species. However, at a macroevolutionary scale those axes summarising both sexual dimorphism and allometric variation of the deep-forked species were aligned with the between-species maximum variation axis of non deep-forked species. Thus, we are presenting evidence of amplified divergence via the co-option and reorientation of allometric shape variation involved in a sexual selection process that repeatedly drove morphology along a historically favoured direction of cladogenetic evolution.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献