Phylogenetic profiling suggests early origin of the core subunits of Polycomb Repressive Complex 2 (PRC2)

Author:

Sharaf AbdoallahORCID,Vijayanathan Mallika,Oborník Miroslav,Mozgová Iva

Abstract

AbstractPolycomb Repressive Complex 2 (PRC2) is involved in establishing transcriptionally silent chromatin states through its ability to methylate lysine 27 of histone H3 by the catalytic subunit Enhancer of zeste [E(z)]. Polycomb group (PcG) proteins play a crucial role in the maintenance of cell identity and in developmental regulation. Previously, the diversity of PRC2 subunits within some eukaryotic lineages has been reported and its presence in early eukaryotic evolution has been hypothesized. So far however, systematic survey of the presence of PRC2 subunits in species of all eukaryotic lineages is missing. Here, we report the diversity of PRC2 core subunit proteins in different eukaryotic supergroups with emphasis on the early-diverged lineages and explore the molecular evolution of PRC2 subunits by phylogenetics. In detail, we investigate the SET-domain protein sequences and their evolution across the four domains of life and particularly focus on the structural diversity of the SET-domain subfamily containing E(z), the catalytic subunit of PRC2. We show that PRC2 subunits are already present in early eukaryotic lineages, strengthening the support for PRC2 emergence prior to diversification of eukaryotes. We identify a common presence of E(z) and ESC, suggesting that Su(z)12 may have emerged later and/or may be dispensable from the evolutionarily conserved functional core of PRC2. Furthermore, our results broaden our understanding of the E(z) evolution within the SET-domain protein family, suggesting possibilities of function evolution. Through this, we shed light on a possible emerging point of the PRC2 and the evolution of its function in eukaryotes.

Publisher

Cold Spring Harbor Laboratory

Reference159 articles.

1. The revised classification of eukaryotes;J. Eukaryot. Microbiol. [Internet],2012

2. Origin of the Bacterial SET Domain Genes: Vertical or Horizontal?;Mol. Biol. Evol. [Internet],2007

3. Bacterial SET domain proteins and their role in eukaryotic chromatin modification;Front. Genet. [Internet],2014

4. Aravind L , Iyer LM . 2003. Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. Cell Cycle.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3