APOE2, E3 and E4 differentially modulate cellular homeostasis, cholesterol metabolism and inflammatory response in isogenic iPSC-derived astrocytes

Author:

de Leeuw Sherida M.,Kirschner Aron W. T.,Lindner Karina,Rust RuslanORCID,Wolski Witold E.,Gavin Anne-Claude,Nitsch Roger M.,Tackenberg ChristianORCID

Abstract

AbstractApolipoprotein E (APOE) is the principal lipid carrier in the CNS and mainly expressed by astrocytes. The three different APOE alleles (E2, E3, and E4) impose differential risk to Alzheimer’s disease (AD); E2 is protective, E3 is defined as average risk, while E4 is the major genetic risk factor for sporadic AD. Despite recent advances, the fundamental role of different APOE alleles in brain homeostasis is still poorly understood. To uncover the functional role of APOE in human astrocytes, we differentiated human APOE-isogenic iPSCs (E4, E3, E2 and APOE-knockout (KO)) to functional astrocytes (hereafter “iAstrocytes”), with a resting, non-proliferating phenotype. Functional assays indicated that polymorphisms in APOE (APOE4>E3>E2=KO) reduced iAstrocyte metabolic and clearance functions including glutamate uptake and receptor-mediated uptake of β-amyloid aggregates. We performed unlabelled mass spectrometry-based proteomic analysis of iAstrocytes at baseline and after activation with interleukin-1β (IL-1β) showing a reduction of cholesterol and lipid metabolic and biosynthetic pathways, and an increase of immunoregulatory pathways at baseline (E4>E3>E2). Cholesterol efflux and biosynthesis were reduced in E4 iAstrocytes, and subcellular localization of cholesterol in lysosomes was increased. In APOE-KO iAstrocytes, APOE-independent mechanisms showed to be proficient in mediating cholesterol biosynthesis and efflux. Proteomic analysis of IL-1β-treated iAstrocytes showed an increase of cholesterol/lipid metabolism and biosynthesis as well as inflammatory pathways. Furthermore, cholesterol efflux, which was reduced in APOE4 iAstrocytes at baseline, was alleviated in activated E4 iAstrocytes. Inflammatory cytokine release was exacerbated upon IL-1β treatment in E4 iAstrocytes (E4>E3>E2>KO), in line with the proteomic data. Taken together, we show that APOE plays a major role in several physiological and metabolic processes in human astrocytes with APOE4 pushing iAstrocytes to a disease-relevant phenotype, causing dysregulated cholesterol/lipid homeostasis, increased inflammatory signalling and reduced β-amyloid uptake while APOE2 iAstrocytes show opposing effects.Our study provides a new reference for AD-relevant proteomic and metabolic changes, mediated by the three main APOE isoforms in human astrocytes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3