Abstract
Summary/AbstractWhole-genome duplications yield varied chromosomal pairing patterns, ranging from strictly bivalent to multivalent, resulting in disomic and polysomic inheritance modes. In the bivalent case, homeologous chromosomes form pairs, where in a multivalent pattern all copies are homologous and are therefore free to pair and recombine. As sufficient sequencing data is more readily available than high-quality cytological assessments of meiotic behavior or population genetic assessment of allelic segregation, especially for non-model organisms, here we describe two bioinformatics approaches to infer origins and inheritance modes of polyploids using short-read sequencing data. The first approach is based on distributions of allelic read depth at the heterozygous sites within an individual, as the expectations of such distributions are different for disomic and polysomic inheritance modes. The second approach is more laborious and based on a phylogenetic assessment of partially phased haplotypes of a polyploid in comparison to the closest diploid relatives. We discuss the sources of deviations from expected inheritance patterns, advantages and pitfalls of both methods, effects of mating types on the performance of the methods, and possible future developments.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献