A new sensitive and robust next-generation sequencing platform for HIV-1 drug resistance mutations testing

Author:

Yu Bin,Jin Changzhong,Ma Zixuan,Cai Ziwei,Li Tingsen,Wang Dan,Xiao Wenwen,Zheng Yanghao,Yin Wanpeng,Wu Nanping,Jiang Miao

Abstract

AbstractNext-generation sequencing (NGS) is a trending new platform which allows cheap, quantitative, high-throughput, parallel sequencing for minority variants with frequencies less than 20% of the HIV-1 quasi-species. In clinical setting, these advantages are crucial for choosing antiretroviral drugs with low genetic barriers and will potentially benefit treatment outcomes.In this investigation, we implemented the Boxin HIV-1 NGS platform for genotyping the drug-resistance-associated variants in PR/RT regions. Plasmids with known mutations were used to analyze the accuracy, reproducibility, and reliability of the Boxin NGS assay. Variant frequencies reported by Boxin NGS and the theoretical value were highly concordant. The Bland-Altman plot and the coefficient of variation (7%) suggested that the method has excellent reproducibility and reliability. Sanger sequencing confirmed the existence of these known variants with frequencies equal or above 20%.78 blood samples were obtained from AIDS patients and underwent PR/RT region genotyping by Sanger sequencing and Boxin NGS. 33 additional drug resistance mutations were identified by Boxin NGS, 23/33 mutations were minority variants with frequencies below 20%.15 blood samples obtained from AIDS patients underwent PR/RT region genotyping by Sanger sequencing, Boxin NGS, and Vela NGS. The Bland-Altman plot suggested that the variant frequencies detected by Boxin and Vela were highly concordant. Moreover, Boxin NGS assay detected five more minority variants with frequencies ranged from 1% to 20%. In a series of samples collected from 2016 to 2017, Boxin NGS reported a M184V mutation with a frequency of 4.92%, 3 months earlier than this mutation was firstly detected by Vela NGS and Sanger sequencing.In conclusion, Boxin NGS had good accuracy, reproducibility, and reliability. Boxin NGS was highly concordant with Sanger sequencing and Vela NGS. In terms of genotyping HIV-1 variants in PR/RT regions, Boxin NGS was more cost-efficient and appeared to have increased sensitivity without compromising sequence accuracy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3