The Evolution of Primate Body Size: Left-skewness, Maximum Size, and Cope’s Rule

Author:

Tillquist Richard C.,Shoemaker Lauren G.,Knight Kevin Bracy,Clauset Aaron

Abstract

Body size is a key physiological, ecological, and evolutionary characteristic of species. Within most major clades, body size distributions follow a right-skewed pattern where most species are relatively small while a few are orders of magnitude larger than the median size. Using a novel database of 742 extant and extinct primate species’ sizes over the past 66 million years, we find that primates exhibit the opposite pattern: a left-skewed distribution. We investigate the long-term evolution of this distribution, first showing that the initial size radiation is consistent with plesiadapiformes (an extinct group with an uncertain ancestral relationship to primates) being ancestral to modern primates. We calculate the strength of Cope’s Rule, showing an initial tendency for descendants to increase in size relative to ancestors until the trend reverses 40 million years ago. We explore when the primate size distribution becomes left-skewed and study correlations between body size patterns and climactic trends, showing that across Old and New World radiations the body size distribution initially exhibits a right-skewed pattern. Left-skewness emerged early in Old World primates in a manner consistent with a previously unidentified possible maximum body size, which may be mechanistically related to primates’ encephalization and complex social groups.

Publisher

Cold Spring Harbor Laboratory

Reference189 articles.

1. Cope's Rule and the Dynamics of Body Mass Evolution in North American Fossil Mammals

2. Alroy, J. (2008), ‘North American fossil mammal systematics database (2008). Paleobiology database online systematics archive 3’, http://paleodb.org/.

3. Alroy, J. et al. (2015), ‘Taxonomic occurrences of primates and plesiadapiformes recorded in the Paleobiology Database. Fossilworks’, http://fossilworks.org/.

4. Temperature, Growth Rate, and Body Size in Ectotherms: Fitting Pieces of a Life-History Puzzle

5. SIZE-FECUNDITY RELATIONSHIPS, GROWTH TRAJECTORIES, AND THE TEMPERATURE-SIZE RULE FOR ECTOTHERMS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3