Inhibitory effect of Bacillus subtilis WL-2 and its IturinA lipopeptides against Phytophthora infestans

Author:

Wang Youyou,Zhang Congying,Wu Lufang,Wang Le,Gao Wenbin,Jiang Jizhi,Wu Yanqing

Abstract

ABSTRACTPotato late blight triggered by Phytophthora infestans ((Mont.) de Bary) represents a great food security threat worldwide and is difficult to control. Currently, Bacillus spp. have been considered biocontrol agents to control many fungal diseases. Here, Bacillus subtilis WL-2 was selected as the antifungal strain with the most potential against P. infestans mycelium growth. Additionally, the functional metabolites extracted from WL-2 were identified as IturinA-family cyclic lipopeptides (CLPs) via high-performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS). Analyses using scanning and transmission electron microscopy (SEM and TEM) revealed that IturinA caused a change in the mycelial surface and damage to the internal cell structure, including cell membrane disruption and irregular organelle formation. Moreover, propidium iodide staining and nucleic acid and protein release were detected to clarify the cell membrane damage caused by IturinA. Additionally, IturinA triggered reactive oxygen species (ROS) generation and malondialdehyde (MDA) production. Mitochondrial membrane potential (MMP), mitochondrial respiratory chain complexes activity (MRCCA), respiratory control rate (RCR), and oxidative phosphorylation efficiency (P/O) assays indicated that P. infestans mitochondria affected by IturinA were so seriously damaged that the MMP and MRCCA declined remarkably and that mitochondrial ATP production ability was weakened. Therefore, IturinA induces cell membrane damage, oxidative stress, and dysfunction of mitochondria, resulting in P. infestans hyphal cell death. As such, the results highlight that B. subtilis WL-2 and IturinA have great potential as candidates for inhibiting P. infestans mycelium growth and controlling potato late blight.IMPORTANCEPotato (Solanum tuberosum L.) is the fourth most common global food crop, and its planting area and yield increase yearly. Notably, in 2015, China initiated a potato staple food conversion strategy, and by 2020, approximately 50% of potatoes will be consumed as a staple food. The plant pathogen fungus Phytophthora infestans ((Mont.) de Bary) is the culprit of potato late blight; however, biological agents rather than chemicals are highly necessary to control this threatening disease. In this study, we discovered an antifungal substance, IturinA, a lipopeptide produced by Bacillus subtilis WL-2. Moreover, our research revealed the actual mechanism of IturinA against P. infestans mycelium growth and clarified the potential of B. subtilis WL-2 and IturinA as a biocontrol agent against P. infestans mycelium growth as well as for controlling the development of late blight in potato cultivation.

Publisher

Cold Spring Harbor Laboratory

Reference103 articles.

1. Reduced efficacy of fluazinam against Phytophthora infestans in the Netherlands;Eur J Plant Pathol,2018

2. Large sub-clonal variation in Phytophthora infestans from recent severe late blight epidemics in India;Sci Rep,2018

3. Wang YY. 2018. The study of antagonistic bacteria WL2 against Phytophthora infestans and its lipopeptides on disease prevention and growth promotion. Hebei University.

4. Effects of inter-annual drought on the complexity of physiological races of Phytophthora infestans;Plant Protection,2017

5. Races of Phytophthora infestans isolated from potato in Hokkaido, Japan;J Gen Plant Pathol,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3