Behavioral phenotyping of an improved mouse model of Phelan-McDermid Syndrome with a complete deletion of the Shank3 gene

Author:

Drapeau Elodie,Riad Mohammed,Kajiwara Yuji,Buxbaum Joseph D.

Abstract

AbstractPhelan-McDermid Syndrome (PMS) is a rare genetic disorder in which one copy of the SHANK3 gene is missing or mutated, leading to a global developmental delay, intellectual disability, and autism. Multiple intragenic promoters and alternatively spliced exons are responsible for the formation of numerous isoforms. Many genetically-modified mouse models of PMS have been generated but most disrupt only some of the isoforms. In contrast, the vast majority of known SHANK3 mutations found in patients involve deletions that disrupt all isoforms. Here, we report the production and thorough behavioral characterization of a new mouse model in which all Shank3 isoforms are disrupted. Our mice are more severely affected than previously published models. While the deficits were typically more pronounced in homozygotes, an intermediate phenotype was observed for heterozygotes in many paradigms. As in other Shank3 mouse models, stereotypies, including increased grooming, were observed. Additionally, both sensory and motor deficits were detected in neonatal and adult mice. While social behaviors were not strongly impacted, Shank3-deficient mice displayed a strong escape behavior and avoidance of inanimate objects indicating increased novelty-induced anxiety. Similarly, increased freezing was observed during fear conditioning training and amygdala-dependent cued retrieval. Finally, deficits were observed in both initial training and reversal in the Barnes maze and in contextual fear memory that are memory tasks involving hippocampal-prefrontal circuits. This new mouse model of PMS, engineered to most closely represent human mutations, recapitulates core symptoms of PMS providing improvements for both construct and face validity, compared to previous models.Significant statementPhelan-McDermid syndrome, caused by happloinsufficiency of Shank3, is a severe and complex neurodevelopmental disorder. This study investigates the behavioral consequences of a disruption of all Shank3 isoforms in neonatal and adult mice using a detailed battery of tests tailored to investigate core symptoms and usual comorbidities of PMS. We found that our new model is more severely affected than previously published mouse models with only partial deletions of Shank3 and more closely recapitulates symptoms of PMS thus providing improvements for both construct and face validity. Our results highlight the significance of using a mouse model with a complete deletion of Shank3 for studying mechanisms underlying autism spectrum disorder and PMS, carrying preclinical studies and testing test novel therapeutic approaches.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3