Abstract
AbstractMolluscan bivalves rapidly repair the damaged shells to prevent further injury. However, it remains unclear how this process is precisely controlled. In this study, we applied scanning electronic microscopy, transmission electronic microscopy and histochemical analysis to examine the detailed shell regeneration process of the pearl oysterPinctada fucata. It was found that the shell damage caused the mantle tissue to retract, which resulted in dislocation of the mantle zones to their correspondingly secreted shell layers. However, the secretory repertoires of the different mantle zones remained unchanged. As a result, the dislocation of the mantle tissue dramatically affected the shell morphology, and the unusual presence of the submarginal zone on the nacreous layers caused de novo precipitation of prismatic layers on the nacreous layers. Real-time PCR revealed that the expression of the shell matrix proteins (SMPs) were significantly upregulated, which was confirmed by the thermal gravimetric analysis (TGA) of the newly formed shell. The increased matrix secretion accelerated CaCO3nucleation thus promoting shell deposition. Taken together, our study revealed the close relationship between the physiological activities of the mantle tissue and the morphological change of the regenerated shells.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献