The GABAA receptor agonist muscimol induces an age- and region-dependent form of long-term depression in the mouse striatum

Author:

Zhang Xiaoqun,Yao Ning,Chergui KarimaORCID

Abstract

Several forms of long-term depression (LTD) of glutamatergic synaptic transmission have been identified in the dorsal striatum and in the nucleus accumbens (NAc). Such experience-dependent synaptic plasticity might play important roles in reward-related learning. The GABAA receptor agonist muscimol was recently found to trigger a long-lasting depression of glutamatergic synaptic transmission in the NAc of adolescent mice, but the mechanisms that underlie this novel form of LTD were not studied. Here we examined the effect of muscimol applied in the perfusion solution on the amplitude of field excitatory postsynaptic potentials/population spikes (fEPSP/PSs) in mouse brain slices. We found that muscimol depressed the fEPSP/PS in the NAc of adolescent mice but not adult mice, through both postsynaptic and presynaptic mechanisms. Indeed, muscimol altered the fEPSP/PS paired-pulse ratio, depolarized the membrane of projection neurons, and decreased the frequency, but not amplitude, of spontaneous excitatory postsynaptic currents in the NAc of adolescent mice. The LTD induced by muscimol likely involved endocannabinoids, metabotropic glutamate receptors (mGluRs), but not TRPV1 receptors. Muscimol-LTD was occluded by prior induction of LTD through low-frequency stimulation (LFS) of the slice, demonstrating a common pathway in the induction of LFS-LTD and muscimol-LTD. We also found that muscimol induced a form of LTD in the dorsolateral striatum of adult but not adolescent mice. This LTD was mediated by endocannabinoids but did not involve mGluRs or TRPV1 receptors. These results identify a novel form of synaptic plasticity, and its mechanisms of induction, which is age and region dependent. These findings may contribute to a better understanding of the increased susceptibility of the adolescent brain to long-term synaptic changes in regions associated with reward mechanisms.

Funder

Swedish Research Council

Swedish Society of Medicine

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3