Notch signaling determines cell-fate specification of the two main types of vomeronasal neurons of rodents

Author:

Katreddi Raghu RamORCID,Taroc Ed Zandro M.ORCID,Hicks Sawyer M,Lin Jennifer MORCID,Liu Shuting,Xiang MengqingORCID,Forni Paolo E.ORCID

Abstract

AbstractThe ability of terrestrial vertebrates to find food, mating partners and to avoid predators heavily relies on the detection of chemosensory information from the environment. The olfactory system of most vertebrate species comprises two distinct chemosensory systems usually referred to as the main and the accessory olfactory system. Olfactory sensory neurons of the main olfactory epithelium detect and transmit odor information to main olfactory bulb (MOB), while the chemosensory neurons of the vomeronasal organ detect semiochemicals responsible for social and sexual behaviors and transmit information to the accessory olfactory bulb (AOB). The vomeronasal sensory epithelium (VNE) of most mammalian species contains uniform vomeronasal (VN) system with vomeronasal sensory neurons (VSNs) expressing vomeronasal receptors of the V1R family. However, rodents and some marsupials have developed a more complex binary VN system, where VNO containing a second main type of VSNs expressing vomeronasal receptors of the V2R family is identified. In mice, V1R and V2R VSNs form from a common pool of progenitors but have distinct differentiation programs. As they mature, they segregate in different regions of the VNE and connect with different parts of the AOB. How these two main types of VSNs are formed has never been addressed. In this study, using single cell RNA sequencing data, we identified differential expression of Notch1 receptor and Dll4 ligand among the neuronal precursors at the VSN dichotomy. We further demonstrated with loss of function (LOF) and gain of function (GOF) studies that Dll4-Notch1 signaling plays a crucial role in triggering the binary dichotomy between the two main types of VSNs in mice.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3