Deep learning redesign of PETase for practical PET degrading applications

Author:

Lu Hongyuan,Diaz Daniel J.,Czarnecki Natalie J.,Zhu Congzhi,Kim Wantae,Shroff Raghav,Acosta Daniel J.,Alexander Brad,Cole Hannah,Zhang Yan Jessie,Lynd Nathaniel,Ellington Andrew D.ORCID,Alper Hal S.ORCID

Abstract

AbstractPlastic waste poses an ecological challenge1. While current plastic waste management largely relies on unsustainable, energy-intensive, or even hazardous physicochemical and mechanical processes, enzymatic degradation offers a green and sustainable route for plastic waste recycling2. Poly(ethylene terephthalate) (PET) has been extensively used in packaging and for the manufacture of fabrics and single-used containers, accounting for 12% of global solid waste3. The practical application of PET hydrolases has been hampered by their lack of robustness and the requirement for high processing temperatures. Here, we use a structure-based, deep learning algorithm to engineer an extremely robust and highly active PET hydrolase. Our best resulting mutant (FAST-PETase: Functional, Active, Stable, and Tolerant PETase) exhibits superior PET-hydrolytic activity relative to both wild-type and engineered alternatives, (including a leaf-branch compost cutinase and its mutant4) and possesses enhanced thermostability and pH tolerance. We demonstrate that whole, untreated, post-consumer PET from 51 different plastic products can all be completely degraded by FAST-PETase within one week, and in as little as 24 hours at 50 °C. Finally, we demonstrate two paths for closed-loop PET recycling and valorization. First, we re-synthesize virgin PET from the monomers recovered after enzymatic depolymerization. Second, we enable in situ microbially-enabled valorization using a Pseudomonas strain together with FAST-PETase to degrade PET and utilize the evolved monomers as a carbon source for growth and polyhydroxyalkanoate production. Collectively, our results demonstrate the substantial improvements enabled by deep learning and a viable route for enzymatic plastic recycling at the industrial scale.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3