Dry Powders for Inhalation Containing Monoclonal Antibodies Made by Thin-Film Freeze-Drying

Author:

Hufnagel Stephanie,Xu Haiyue,Sahakijpijarn Sawittree,Moon Chaeho,Chow Laura Q.M.,Williams Robert O.ORCID,Cui Zhengrong

Abstract

AbstractThin-film freeze-drying (TFFD) is a rapid freezing and then drying technique used to prepare inhalable dry powders from the liquid form for drug delivery to the lungs. We report the preparation of aerosolizable dry powders of monoclonal antibodies (mAbs) by TFFD. We first formulated IgG with lactose/leucine (60:40 w/w) or trehalose/leucine (75:25). IgG 1% (w/w) formulated with lactose/leucine (60:40 w/w) in phosphate buffered saline (PBS) (IgG-1-LL-PBS) and processed by TFFD was found to produce the powder with the most desirable aerosol properties. We then replaced IgG with a specific antibody, anti-programmed cell death protein (anti-PD-1 mAb), to prepare a dry powder (anti-PD1-1-LL-PBS), which performed similarly to the IgG-1-LL-PBS powder. The aerosol properties of anti-PD1-1-LL-PBS were significantly better when TFFD was used to prepare the powder as compared to conventional shelf freeze-drying (shelf FD). The dry powder had a porous structure with nanoaggregates. The dry powder had a Tg value between 39-50 °C. When stored at room temperature, the anti-PD-1 mAb in the TFFD powder was more stable than that of the same formulation stored as a liquid. The addition of polyvinylpyrrolidone (PVP) K40 in the formulation was able to raise the Tg to 152 °C, which is expected to further increase the storage stability of the mAbs. The PD-1 binding activities of the anti-PD-1 mAbs before and after TFFD were not different. While protein loss, likely due to protein binding to glass or plastic vials and the TFF apparatus, was identified, we were able to minimize the loss by increasing mAb content in the powders. Lastly, we show that another mAb, anti-TNF-α, can also be converted to a dry powder with a similar composition by TFFD. We conclude that TFFD can be applied to produce stable aerosolizable dry powders of mAbs for pulmonary delivery.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Agarabi, C. , Identification and Minimization of Protein Loss During the Manufacturing of a Beta Domain Deleted Recombinant Human Factor VIII. 2006.

2. Lyophilization strategies for development of a high-concentration monoclonal antibody formulation: benefits and pitfalls;Am Pharm Rev,2010

3. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective;The AAPS journal,2019

4. Merck , KEYTRUDA package insert. 2014.

5. Pulmonary Delivery of Biological Drugs;Pharmaceutics,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3