Coloring inside the lines: genomic architecture and evolution of a widespread color pattern in frogs

Author:

Goutte SandraORCID,Hariyani Imtiyaz,Utzinger Kole Deroy,Bourgeois Yann,Boissinot Stéphane

Abstract

SummaryTraits shared among distantly related lineages are indicators of common evolutionary constraints, at the ecological, physiological or molecular level. The vertebral stripe is a color pattern that is widespread across the anuran phylogeny. Despite its prevalence in the order, surprisingly little is known about the genetic basis and evolutionary dynamic of this color pattern. Here we combine histology, genome- and transcriptome-wide analyses with order-scale phylogenetic comparative analyses to investigate this common phenotype. We show that the vertebral stripe has evolved hundreds of times in the evolutionary history of anurans and is selected for in terrestrial habitats. Using the Ethiopian Ptychadena radiation as a model system, we demonstrate that variation at the ASIP gene is responsible for the different vertebral stripe phenotypes. Alleles associated to these phenotypes are younger than the split between closely related Ptychadena species, thus indicating that the vertebral stripe results from parallel evolution within the group. Our findings demonstrate that this widespread color pattern evolves rapidly and recurrently in terrestrial anurans, and therefore constitute an ideal system to study repeated evolution.

Publisher

Cold Spring Harbor Laboratory

Reference66 articles.

1. Black pattern polymorphism and tadpole growth rate in two Western Australian frogs;Aust. J. Zool,1977

2. Physiological side-effect model for diversification of non-functional or neutral traits : a possible evolutionary history of Vanessa butterflies (Lepidoptera, Nymphalidae);Lepidoptera Sci,2008

3. SEXUAL SELECTION AND THE EVOLUTION OF COMPLEX COLOR PATTERNS IN DRAGON LIZARDS

4. Sexual selection on jumping spider color pattern: investigation with a new quantitative approach

5. Diversity in warning coloration: selective paradox or the norm?;Biol. Rev,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3