The role of cell geometry and cell-cell communication in gradient sensing

Author:

Fiorentino JonathanORCID,Scialdone AntonioORCID

Abstract

AbstractCells can measure shallow gradients of external signals to initiate and accomplish a migration or a morphogenetic process. Recently, starting from mathematical models like the local-excitation global-inhibition (LEGI) model and with the support of empirical evidence, it has been proposed that cellular communication improves the measurement of an external gradient. However, the mathematical models that have been used have over-simplified geometries (e.g., they are uni-dimensional) or assumptions about cellular communication, which limit the possibility to analyze the gradient sensing ability of more complex cellular systems. Here, we generalize the existing models to study the effects on gradient sensing of cell number, geometry and of long-versus short-range cellular communication in 2D systems representing epithelial tissues. We find that increasing the cell number can be detrimental for gradient sensing when the communication is weak and limited to nearest neighbour cells, while it is beneficial when there is long-range communication. We also find that, with long-range communication, the gradient sensing ability improves for tissues with more disordered geometries; on the other hand, an ordered structure with mostly hexagonal cells is advantageous with nearest neighbour communication. Our results considerably extend the current models of gradient sensing by epithelial tissues, making a step further toward predicting the mechanism of communication and its putative mediator in many biological processes.Author summaryGroups of cells collectively migrate in many biological processes, ranging from development to cancer metastasis. The migration is often driven by the gradient of a signaling molecule that can be shallow and noisy, raising the question of how cells can measure it reliably. Cellular communication has recently been suggested to play a key role in gradient sensing, and mathematical models with simplified cellular geometries have been developed to help interpret and design experiments. In this work, we generalize the existing mathematical models to investigate how short- and long-range cellular communication can increase gradient sensing in two-dimensional models of epithelial tissues. We analyze various cellular geometries and tissue size, and we identify the optimal setting that corresponds to different types of communication. Our findings will help pinpoint the communication mechanisms at work in a given tissue and the properties of the molecules that mediate the communication.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3