Molecular transport and packing underlie increasing ribosome productivity in faster growing cells

Author:

Maheshwari Akshay J.ORCID,Gonzalez EmmaORCID,Sunol Alp M.ORCID,Endy DrewORCID,Zia Roseanna N.ORCID

Abstract

SummaryFaster growing cells must make proteins more quickly. This occurs in part through increasing total ribosome abundance. However, the productivity of individual ribosomes also increases, almost doubling via an unknown mechanism. To investigate, we model both physical transport and chemical reactions among ensembles of individual molecules involved in translation elongation in Escherichia coli. We predict that the Damköhler number, the ratio of transport latency to reaction latency, for translation elongation is ~4; physical transport of individual ternary complexes accounts for ~80% of elongation latency. We also model how molecules pack closer together as growth quickens. Although denser cytoplasm both decreases transport distances and hinders motion, we predict that decreasing distance wins out, offering a simple mechanism for how individual elongating ribosomes become more productive as growth quickens. We also quantify how crowding imposes a physical limit on the performance of self-mixing molecular systems and likely undergirds cellular behavior more broadly.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3