Abstract
AbstractThe ability to drive expression of exogenous genes in different tissues and cell types, under control of specific enhancers, has catapulted discovery in biology. While many enhancers drive expression broadly, several genetic tricks have been developed to obtain access to isolated cell types. However, studies of topographically organized neuropiles, such as the optic lobe in fruit flies, have raised the need for a system that can access subsets of cells within a single neuron type, a feat currently dependent on stochastic flip-out methods. To access the same subsets of cells consistently across flies, we developed LOV-LexA, a light-gated expression system based on the bacterial LexA transcription factor and the plant-derived LOV photosensitive domain. Expression of LOV-Lex in larval fat body as well as pupal and adult neurons enables spatial and temporal control of expression of transgenes under LexAop sequences with blue light. The LOV-LexA tool thus provides another layer of intersectional genetics, allowing for light-controlled genetic access to the same subsets of cells within an expression pattern across individual flies.Abstract Figure
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献