Computational modelling of trans-synaptic nanocolumns, a modulator of synaptic transmission

Author:

Li Xiaoting,Hémond GabrielORCID,Godin Antoine G.ORCID,Doyon Nicolas

Abstract

AbstractNanocolumns are trans-synaptic structures which align presynaptic vesicles release sites and postsynaptic receptors. However, how these nano structures shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modelling is a usefull approach to investigate the possible functional impacts of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter diffusion. We found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitters. We also show that synapses with and without nanocolumns could have differentiated responses to spontaneous or evoked events. Our work provides a new methodology to investigate in silico the role of the submicroscopic organization of the synapse.Author summaryNeurotransmitter release, diffusion, and binding to postsynaptic receptors are key steps in synaptic transmission. However, the submicroscopic arrangement of receptors and presynaptic sites of neurotransmitter release remains little investigated. Experimental observations revealed the presence of trans-synaptic nanocolumns which span both the pre and post synaptic sites and fine tune the position of the post synaptic receptors. The functional impact of these nanocolumns (i.e. their influence on synaptic current) is both little understood and difficult to investigate experimentally. Here we construct a novel in silico model to investigate the functional impact of nanocolumns and show that they could play a functional role in reinforcing weak synapses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3