Abstract
ABSTRACTX inactivation is the means of equalizing the dosage of X chromosomal genes in male and female eutherian mammals, so that only one X is active in each cell. The XIST locus (in cis) on each additional X chromosome initiates the transcriptional silencing of that chromosome, making it an inactive X. How the active X in both males and females is protected from inactivation by its own XIST locus is not well understood in any mammal. Previous studies of autosomal duplications suggest that gene(s) on the short arm of human chromosome 19 repress XIST function on the active X. Here, we examine the time of transcription of some candidate genes in preimplantation embryos using single-cell RNA sequencing data from human embryos and qRT-PCR from bovine embryos. The candidate genes assayed are those transcribed from 19p13.3-13.2, which are widely expressed and can remodel chromatin. Our results confirm that XIST is expressed at low levels from the future active X in embryos of both sexes; they also show that the XIST locus is repressed in both sexes when pluripotency factors are being upregulated, during the 4-8 cell and morula stages in human and bovine embryos – well before the early blastocyst (E5) when XIST on the inactive X in females begins to be upregulated. Our data suggest a role for DNMT1, UHRF1, SAFB and SAFB2 in XIST repression; they also exclude XACT and other 19p candidate genes and provide the transcriptional timing for some genes not previously assayed in human or bovine preimplantation embryos.
Publisher
Cold Spring Harbor Laboratory