Abstract
AbstractUnderstanding seizure formation and spread remains a critical goal of epilepsy research. While many studies have documented seizure spread, it remains mysterious how they start. We used fast in-vivo two-photon calcium imaging to reconstruct, at cellular resolution, the dynamics of focal cortical seizures as they emerge in epileptic foci (intrafocal), and subsequently propagate (extrafocal). We find that seizures start as intrafocal coactivation of small numbers of neurons (ensembles), which are electrographically silent. These silent “microseizures” expand saltatorily until they break into neighboring cortex, where they progress smoothly and first become detectable by LFP. Surprisingly, we find spatially heterogeneous calcium dynamics of local PV interneuron sub-populations, which rules out a simple role of inhibitory neurons during seizures. We propose a two-step model for the circuit mechanisms of focal seizures, where neuronal ensembles first generate a silent microseizure, followed by widespread neural activation in a travelling wave, which is then detected electrophysiologically.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献