Flow-field inference from neural data using deep recurrent networks

Author:

Kim Timothy DoyeonORCID,Luo Thomas ZhihaoORCID,Can TankutORCID,Krishnamurthy KameshORCID,Pillow Jonathan W.ORCID,Brody Carlos D.ORCID

Abstract

AbstractComputations involved in processes such as decision-making, working memory, and motor control are thought to emerge from the dynamics governing the collective activity of neurons in large populations. But the estimation of these dynamics remains a significant challenge. Here we introduce Flow-field Inference from Neural Data using deep Recurrent networks (FINDR), an unsupervised deep learning method that can infer low-dimensional nonlinear stochastic dynamics underlying neural population activity. Using population spike train data from frontal brain regions of rats performing an auditory decision-making task, we demonstrate that FINDR outperforms existing methods in capturing the heterogeneous responses of individual neurons. We further show that FINDR can discover interpretable low-dimensional dynamics when it is trained to disentangle task-relevant and irrelevant components of the neural population activity. Importantly, the low-dimensional nature of the learned dynamics allows for explicit visualization of flow fields and attractor structures. We suggest FINDR as a powerful method for revealing the low-dimensional task-relevant dynamics of neural populations and their associated computations.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Arvanitidis, G. , Hansen, L. K. , and Hauberg, S. Latent space oddity: on the curvature of deep generative models. In International Conference on Learning Representations, 2018.

2. Bishop, C. M. Pattern Recognition and Machine Learning.Springer, 1 edition, 2007. ISBN 0387310738.

3. Bronstein, M. M. , Bruna, J. , Cohen, T. , and Veličković, P. Geometric deep learning: Grids, groups, graphs, geodesics, and gauges, 2021.

4. Burgess, C. P. , Higgins, I. , Pal, A. , Matthey, L. , Watters, N. , Desjardins, G. , and Lerchner, A. Understanding disentangling in β-vae, 2018.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3