Using Multivariate Pattern Analysis to Increase Effect Sizes for Event-Related Potential Analyses

Author:

Carrasco Carlos Daniel,Bahle BrettORCID,Simmons Aaron Matthew,Luck Steven J.

Abstract

AbstractMultivariate pattern analysis approaches can be applied to the topographic distribution of event-related potential (ERP) signals to ‘decode’ subtly different stimulus classes, such as different faces and different orientations. These approaches are extremely sensitive, and it seems possible that they could also be used to increase effect sizes and statistical power in traditional paradigms that ask whether an ERP component differs in amplitude across conditions. To assess this possibility, we leveraged the open-source ERP CORE dataset and compared the effect sizes resulting from conventional univariate analyses of mean amplitude with two multivariate pattern analysis approaches (support vector machine decoding and the cross-validated Mahalanobis distance, both of which are easy to compute using open-source software). We assessed these approaches across seven widely studied ERP components (N170, N400, N2pc, P3b, lateral readiness potential, error related negativity, and mismatch negativity). Across all components, we found that multivariate approaches yielded effect sizes that were as large or larger than the effect sizes produced by univariate approaches. These results indicate that researchers could obtain larger effect sizes, and therefore greater statistical power, by using multivariate analysis of topographic voltage patterns instead of traditional univariate analyses in many ERP studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3