Abstract
AbstractAimsThe right ventricular outflow tract (RVOT) is the outlet from the right ventricle and is the initiating substrate of life-threatening arrhythmias. While the luminal wall of the RVOT is often assumed to be without the complex trabecular meshwork that characterizes the right ventricular free wall, the anatomy of the RVOT is an understudied subject. Our aim was to investigate whether trabeculations occur in the RVOT and to assess whether this impacts electrical propagation.Methods & ResultsWe used high-resolution MRI and serial sectioning to reconstruct the macroscopic details of the human RVOT and identified cases exhibiting much trabeculation. The smooth lumen of the RVOT varied between 9% and 23% of the total RV anterior surface (N=11). Histological analysis on additional six hearts indicated that the RVOT compact layer is thinner when trabeculations are present. RNA sequencing of four human donor hearts revealed enrichment in the subendocardial region of 88 genes associated with cardiac conduction and trabeculations (P adjusted<0.05). Finally, we selected two human donor hearts showing trabeculations in the RVOT from which we generated wedge preparation and performed optical and electrical mapping. The trabecular regions demonstrated high degree of fractionation when compared to non-trabeculated regions, which coincided with delayed activation.ConclusionTrabeculations are found in the RVOT, and their extent varies among individuals. This impacts on the thickness of the compact wall in the RVOT, restricting the depth of tissue at which clinical interventions can be performed, as well as influencing electrical propagation and possible arrhythmogenicity.
Publisher
Cold Spring Harbor Laboratory