Network Enrichment Significance Testing in Brain-Phenotype Association Studies

Author:

Weinstein Sarah M.ORCID,Vandekar Simon N.ORCID,Alexander-Bloch Aaron F.ORCID,Raznahan ArminORCID,Li MingyaoORCID,Gur Raquel E.,Gur Ruben C.ORCID,Roalf David R.ORCID,Park Min Tae M.ORCID,Chakravarty MallarORCID,Baller Erica B.ORCID,Linn Kristin A.ORCID,Satterthwaite Theodore D.ORCID,Shinohara Russell T.ORCID

Abstract

AbstractFunctional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about the spatial structure of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genomics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose Network Enrichment Significance Testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study phenotype associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. “On testing for spatial correspondence between maps of human brain structure and function;In:Neuroimage,2018

2. “Developmental coupling of cerebral blood flow and fMRI fluctuations in youth;In: Cell Reports,2022

3. “Development of structure–function coupling in human brain networks during youth;In: Proceedings of the National Academy of Sciences,2020

4. Belzunce, Felix , Carolina Martinez Riquelme , and Julio Mulero (2015). An introduction to stochastic orders. Academic Press.

5. “Generative modeling of brain maps with spatial autocorrelation;In: NeuroImage,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3