Utilizing gene co-expression networks with the rat kidney TXG-MAPr tool to enhance safety assessment, biomarker identification and human translation

Author:

Kunnen Steven J.ORCID,Callegaro GiuliaORCID,Sutherland Jeffrey J.ORCID,Trairatphisan PanuwatORCID,Wijaya Lukas S.ORCID,van Kessel Hugo,Chung Git,Pye Keith,Brown Colin,Goldstein Keith M.,Teague Claire R.,Fisher Ciarán,Harvey James S.,Elmore Susan A.,Heinz-Taheny Kathleen M.,Stevens James L.ORCID,van de Water BobORCID

Abstract

AbstractToxicogenomic data represent a valuable source of biological information at molecular and cellular level to understand unanticipated organ toxicities. Weighted gene co-expression networks analysis can reduce the complexity of gene-level transcriptomic data to a set of biological response-networks useful for providing insights into mechanisms of drug-induced adverse outcomes. In this study, we have built co-regulated gene networks (modules) from the TG-GATEs rat kidney datasets consisting of time– and dose-response data for 41 compounds, including nephrotoxicants. Data from the 347 modules were incorporated into the rat kidney TXG-MAPr web tool, a user-friendly interface that enables visualization and analysis of module perturbations, quantified by a module eigengene score (EGS) for each treatment condition. Several modules annotated for cellular stress, renal injury and inflammation were statistically associated with concurrent renal pathologies, including modules that contain both well-known and novel renal biomarker genes. In addition, many rat kidney modules contain well annotated, robust gene networks that are preserved in other transcriptome datasets, suggesting that these biological networks translate to other (drug-induced) kidney injury cases. Moreover, preservation analysis of human kidney transcriptomic data provided a quantitative metric to assess the likelihood that rat kidney modules, and the associated biological interpretation, translate from non-clinical species to human. In conclusion, the rat kidney TXG-MAPr enables uploading and analysis of kidney gene expression data in the context of rat kidney co-expression networks, which could identify possible safety liabilities and/or mechanisms that can lead to adversity for chemical or drug candidates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3