Population analyses reveal heterogenous encoding in the medial prefrontal cortex during naturalistic foraging

Author:

Jeong Ji HoonORCID,Choi June-SeekORCID

Abstract

AbstractForaging in the wild requires coordinated switching of critical functions, including goal-oriented navigation and context-appropriate action selection. Nevertheless, few studies have examined how different functions are represented in the brain during naturalistic foraging. To address this question, we recorded multiple single-unit activities from the medial prefrontal cortex (mPFC) of rats seeking a sucrose reward in the presence of a robotic predator (Lobsterbot) that posed periodic threats. Simultaneously recorded ensemble activities from 10-24 neurons were analyzed in reference to various behavioral indices as the animal moved freely between the nest (N) and the goal (E) across the foraging (F) area. In the E-zone, the rat initially received and gradually learned to avoid unpredictable attacks by the Lobsterbot. An artificial neural network, trained with simultaneously recorded neural activity, estimated the rat’s current distance from the Lobsterbot. The accuracy of distance estimation was the highest in the middle F-zone in which the dominant behavior was active navigation. The spatial encoding persisted in the N-zone when non-navigational behaviors such as grooming, rearing, and sniffing were excluded. In contrast, the accuracy decreased as the animal approached the E-zone, when the activity of the same neuronal ensembles was more correlated with dynamic decision-making between food procurement and Lobsterbot evasion. A population-wide analysis confirmed a highly heterogeneous encoding by the region. To further assess the decision-related activity in the E-zone, a naïve Bayesian classifier was trained to predict the success and failure of avoidance behavior. The classifier predicted the avoidance outcome as much as 6 s before the head withdrawal. In addition, two sub-populations of recorded units with distinct temporal dynamics contributed differently to the prediction. These findings suggest that the mPFC neurons may adopt at least two modes of heterogenous encoding that reflect the processing of relevant spatial context and the imminent situational challenge.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3