An explainable model using Graph-Wavelet for predicting biophysical properties of proteins and measuring mutational effects

Author:

Mishra Shreya,Pandey Neetesh,Rawat Atul,Srivastava Divyanshu,Ray ArjunORCID,Kumar Vibhor

Abstract

ABSTRACTProteins hold multispectral patterns of different kinds of physicochemical features of amino acids in their structures, which can help understand proteins’ behavior. Here, we propose a method based on the graph-wavelet transform of signals of features of amino acids in protein residue networks derived from their structures to achieve their abstract numerical representations. Such abstract representations of protein structures hand in hand with amino-acid features can be used for different purposes, such as modelling the biophysical property of proteins. Our method outperformed graph-Fourier and convolutional neural-network-based methods in predicting the biophysical properties of proteins. Even though our method does not predict deleterious mutations, it can summarize the effect of an amino acid based on its location and neighbourhood in protein-structure using graph-wavelet to estimate its influence on the biophysical property of proteins. Such an estimate of the influence of amino-acid has the potential to explain the mechanism of the effect of deleterious non-synonymous mutations. Thus, our approach can reveal patterns of distribution of amino-acid properties in the structure of the protein in the context of a biophysical property for better classification and more insightful understanding.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3