Color morphs of the coral,Acropora tenuis, show different responses to environmental stress and different expression profiles of fluorescent-protein genes

Author:

Satoh NoriyukiORCID,Kinjo Koji,Shintaku Kohei,Kezuka Daisuke,Ishimori Hiroo,Yokokura Atsushi,Hagiwara Kazutaka,Hisata Kanako,Kawamitsu Mayumi,Koizumi Koji,Shinzato Chuya,Zayasu Yuna

Abstract

ABSTRACTCorals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs ofAcropora tenuishave been recognized for decades. These include brown (N morph), yellow-green (G) and purple (P) forms. The tips of axial coral polyps exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, the N and P morphs experienced bleaching, in which some N morphs died while P morphs recovered. In contrast, G morphs successfully withstood the stress. Symbiotic dinoflagellates are essential symbiotic partners of scleractinian corals. Photosynthetic activity of symbionts was reduced in July in N and P morphs; however, the three color-morphs host similar sets of Clade-C zoothanthellae, suggesting that beaching of N and P morphs cannot be attributed to differences in symbiont clades. The decodedAcropora tenuisgenome includes five genes for green fluorescent proteins (GFP), two for cyan fluorescent proteins (CFP), three for red fluorescent proteins (RFP), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles demonstrated that (a) expression of CFP and REP was quite low in all three morphs, (b) P morphs expressed higher levels of ChrP, (c) both N and G morphs expressed GFP highly, and (d) GFP expression was reduced in N morphs, compared to G morphs, which maintained higher levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs ofAcropora tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Effects of solar ultraviolet radiation on coral reef organisms;Photochem. Photobiol. Sciences,2009

2. Trimmomatic: a flexible trimmer for Illumina sequence data

3. Burke, L. , K. Reytar , M. Spalding and A. Perry , 2011 Reefs at risk revisited, World Resources Institute.

4. Selecting control genes for RT-QPCR using public microarray data

5. Hope for coral reefs;Nature,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3