Radiolabelled Bacterial Metallophores as Targeted PET Imaging Contrast Agents for Accurate Identification of Bacteria and Outer Membrane Vesicles in vivo

Author:

Siddiqui Nabil A.,Houson Hailey A.,Thomas Shindu C.,Blanco Jose R.,O’Donnell Robert E.,Hassett Daniel J.,Lapi Suzanne E.ORCID,Kotagiri NalinikanthORCID

Abstract

AbstractModern technologies such as 16s DNA sequencing capable of identifying microbes and provide taxonomic resolution at species and strain-specific levels is destined to be transformative1. Likewise, there is an emerging need to accurately identify both infectious and non-infectious microbes non-invasively in the body at the genus and species level to guide diagnosis and treatment strategies. Here, we report development of radiometal-labelled bacterial chelators, knowns as metallophores that allow non-invasive and selective imaging of bacteria and bacterial products in vivo. We show that these novel contrast agents are able to identify E. coli with strain level specificity and other bacteria, such as K. pneumoniae, based on expression of distinct cognate transporters on the bacterial surface. The probe is also capable of tracking probiotic, engineered bacteria and bacterial products, outer membrane vesicles (OMVs), in unique niches such as tumours. Moreover, we report that this novel targeted imaging approach has impactful applicability in monitoring antibiotic treatment outcomes in patients with pulmonary infections, thereby providing the ability to optimize individualized therapeutic approaches. Compared to traditional techniques used to manufacture probes, this strategy simplifies the process considerably by combining the function of metal attachment and cell recognition into a single molecule. Thus, we anticipate that these probes will be widely used in both clinical and investigative settings in living systems for non-invasive imaging of infectious and non-infectious organisms.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis

2. The antibiotic resistance crisis: part 2: management strategies and new agents;P & T : a peer-reviewed journal for formulary management,2015

3. Cancer and the microbiota

4. How gut microbes talk to organs: The role of endocrine and nervous routes

5. Microbes, Microbiota, and Colon Cancer

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3