Interpretation of exercise-induced changes in human skeletal muscle mRNA expression depends on the timing of the post-exercise biopsies

Author:

Kuang JujiaoORCID,McGinley CianORCID,Lee Matthew J-CORCID,Saner Nicholas JORCID,Garnham Andrew,Bishop David JORCID

Abstract

ABSTRACTAimExercise elicits a range of adaptive responses in skeletal muscle that include changes in mRNA expression. To better understand the health benefits of exercise training, it is essential to investigate the underlying molecular mechanisms of skeletal muscle adaptations to exercise. However, most studies have assessed the molecular events at a few convenient time points within a short time frame post exercise, and the variations of gene expression kinetics have not been addressed systematically.MethodMuscle biopsies were collected from nine participants at baseline and six time points (0, 3, 9, 24, 48, and 72 h) following a session of high-intensity interval exercise. We assessed the mRNA content of 23 gene isoforms from the muscle samples.ResultThe temporal patterns of target gene expression were highly variable and the mRNA contents detected were largely dependent on the muscle sample timing. The maximal levels of mRNA content of all tested target genes were observed between 3 to 48 h post exercise.ConclusionOur findings highlight a critical gap in knowledge regarding the molecular response to exercise, where the use of a few time points within a short period after exercise has led to an incomplete understanding of the molecular responses to exercise. The timing of muscle sampling for individual studies needs to be carefully chosen based on existing literature and preliminary analysis of the molecular targets of interest. We propose that a comprehensive time-course analysis on the exercise-induced transcriptional response in humans will significantly benefit the field of exercise molecular biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3