Characterization of Mice Bearing Humanized Androgen Receptor Genes (h/mAr) Varying in Polymorphism Length

Author:

Lindenmaier Zsuzsa,Yee YohanORCID,Kinman Adrienne,Fernandes Darren,Ellegood JacobORCID,Burton Christie L.,Robins Diane M.ORCID,Raznahan ArminORCID,Arnold PaulORCID,Lerch Jason P.

Abstract

AbstractThe androgen receptor (AR) is known for masculinization of behavior and brain. To better understand the role that AR plays, mice bearing humanized Ar genes with varying lengths of a polymorphic N-terminal glutamine (Q) tract were created (Albertelli et al 2006). The length of the Q tract is inversely proporitional to AR activity. Biological studies of the Q tract length may also provide a window into potential AR contributions to sex-biases in disease risk.Here we take a multi-pronged approach to characterizing AR signaling effects on brain and behavior in mice using the humanized Ar Q tract model. We first map effects of Q tract length on regional brain anatomy, and consider if these are modified by gonadal sex. We then test the notion that spatial patterns of anatomical variation related to Q tract length could be organized by intrinsic spatiotemporal patterning of AR gene expression in the mouse brain. Finally, we test influences of Q tract length on four behavioral tests.Altering Q tract length led to neuroanatomical differences in a non-linear dosage-dependent fashion. Gene expression analyses indicated that adult neuroanatomical changes due to Q tract length are only associated with neurodevelopment (as opposed to adulthood). No significant effect of Q tract length was found on the behavior of the three mouse models. These results indicate that AR activity differentially mediates neuroanatomy and behavior, that AR activity alone does not mediate sex differences, and that neurodevelopmental processes are associated with spatial patterns of volume changes due to Q tract length in adulthood. They also indicate that androgen sensitivity in adulthood does not directly lead to autism-related behaviors or neuroanatomy, although neurodevelopmental processes may play a role earlier. Further study into sex differences, development, other behaviors, and other sex-specific mechanisms are needed to better understand AR sensitivity, neurodevelopmental disorders, and the sex difference in their prevalence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3