Author:
Georgoulis Stratton J.,Shalvarjian Katie E.,Helmann Tyler C.,Hamilton Corri D.,Carlson Hans K,Deutschbauer Adam M,Lowe-Power Tiffany M.
Abstract
Plant pathogenic Ralstonia spp. colonize plant xylem and cause wilt diseases on a broad range of host plants. To identify genes that promote growth of diverse Ralstonia strains in xylem sap from tomato plants, we performed genome-scale genetic screens (random barcoded transposon mutant sequencing screens; RB-TnSeq) in three strains spanning the genetic, geographical, and physiological range of plant pathogenic Ralstonia: R. solanacearum IBSBF1503, R. pseudosolanacearum GMI1000, and R. syzygii PSI07. Contrasting mutant fitness phenotypes in culture media versus in xylem sap suggest that Ralstonia strains are adapted to ex vivo xylem sap and that culture media impose foreign selective pressures. Although wild-type Ralstonia grew in sap and in rich medium with similar doubling times and to a similar carrying capacity, more genes were essential for growth in sap than in rich medium. Each strain required many genes associated with envelope remodeling and repair processes for full fitness in xylem sap. These genes were associated with peptidoglycan peptide formation (murI), secretion of periplasmic proteins (tatC), periplasmic protein folding (dsbA), synthesis of osmoregulated periplasmic glucans (mdoGH), and LPS biosynthesis. Mutants in four genes had strong, sap-specific fitness defects in all strain backgrounds: murI, thiC, purU, and a lipoprotein (RSc2007). Many amino acid biosynthesis genes were required for fitness in both minimal medium and xylem sap. Multiple mutants with insertions in virulence regulators had gains-of-fitness in culture media and neutral fitness in sap. Our genome-scale genetic screen identified Ralstonia fitness factors that promote growth in xylem sap, an ecologically relevant condition.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献