A giant cell enhancer achieves cell-type specificity through activation via TCP and repression by Dof transcription factors

Author:

Hong LilanORCID,Ko Clint S.ORCID,Kang S. Earl,Pruneda-Paz Jose L.ORCID,Roeder Adrienne H. K.ORCID

Abstract

AbstractProper pattern formation relies on the tight coordination of cell fate specification and cell cycle regulation in growing tissues. How this can be organized at enhancers that activate gene expression necessary for differentiation is not well understood. One such example is the patterning of the Arabidopsis thaliana sepal epidermis where giant cell fate specification is associated with the endoreduplication cell cycle. Previously, we identified an enhancer region capable of driving giant cell-specific expression. In this study, we use the giant cell enhancer as a model to understand the regulatory logic that promotes cell-type specific expression. Our dissection of the enhancer revealed that giant cell specificity is achieved primarily through the combination of two elements: an activator and a repressor. TCP transcription factors are involved in activation of non-specific expression throughout the epidermis with higher expression in endoreduplicated giant cells than small cells. Dof transcription factors act via the second element to repress activity of the enhancer and limit expression to giant cells. Thus, we find that cell-type specific expression emerges from the combined activities of two broadly acting enhancer elements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3