Ectopic expression of a maize gene is induced by Composite Insertions generated through Alternative Transposition

Author:

Su WeijiaORCID,Zuo TaoORCID,Peterson ThomasORCID

Abstract

AbstractTransposable elements (TEs) are DNA sequences that can mobilize and proliferate throughout eukaryotic genomes. Previous studies have shown that in plant genomes, TEs can influence gene expression in various ways such as inserting in introns or exons to alter transcript structure and content, and providing novel promoters and regulatory elements to generate new regulatory patterns. Furthermore, TEs can also regulate gene expression at the epigenetic level by modifying chromatin structure, changing DNA methylation status and generating small RNAs. In this study, we demonstrated thatAc/fActransposable elements are able to induce ectopic gene expression by duplicating and shuffling enhancer elements.Ac/fAcelements belong to thehATfamily of Class II TEs. They can undergo standard transposition events, which involve the two termini of a single transposon, or alternative transposition events which involve the termini of two different, nearby elements. Our previous studies have shown that alternative transposition can generate various genome rearrangements such as deletions, duplications, inversions, translocations and Composite Insertions (CIs). We identified over 50 independent cases of CIs generated byAc/fAcalternative transposition and analyzed 10 of them in detail. We show that these CIs induced ectopic expression of the maizepericarp color 2 (p2)gene, which encodes a Myb-related protein. All the CIs analyzed contain sequences including a transcriptional enhancer derived from the nearbyp1gene, suggesting that the CI-induced activation ofp2is effected by mobilization of thep1enhancer. This is further supported by analysis of a mutant in which the CI is excised andp2expression is lost. These results show that alternative transposition events are not only able to induce genome rearrangements, but also generate Composite Insertions that can control gene expression.SummaryWhen Barbara McClintock originally identified and characterized Transposable Elements (TEs) in maize, she termed them “Controlling Elements” due to their effects on gene expression. Here we show that maizeAc/DsTEs can acquire a genomic enhancer and generate Composite Insertions (CIs) that activate expression of a nearby gene. CIs are structurally variable elements that include TE termini enclosing sequences from an original donor locus, and are formed when the termini of two nearby TEs transpose during S phase from a replicated to unreplicated site. In this way, TEs may acquire genomic enhancers to generate Controlling Elements as described by McClintock.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3