Spontaneous single synapse activity predicts evoked neurotransmission by using overlapping machinery

Author:

Grasskamp Andreas T.ORCID,Jusyte MeidaORCID,McCarthy Anthony W.ORCID,Götz Torsten W.B.,Walter Alexander M.ORCID

Abstract

AbstractSynaptic transmission relies on presynaptic neurotransmitter (NT) release from synaptic vesicles (SVs), and on NT detection by postsynaptic receptors. Two principal modes exist: action-potential (AP) evoked and AP-independent “spontaneous” transmission. Though universal to all synapses and essential for neural development and function, regulation of spontaneous transmission remains enigmatic. Mechanisms divergent from AP-evoked transmission were described, but are difficult to reconcile with its established function in adjusting AP-evoked transmission. By studying neurotransmission at individual synapses of Drosophila larval neuromuscular junctions (NMJs), we show a clear interdependence of transmission modes: Components of the AP-evoked NT-release machinery (Unc13, Syntaxin-1 and BRP) also predicted spontaneous transmission. Both modes were reduced when blocking voltage-gated calcium channels and engaged an overlapping pool of SVs and NT-receptors. While a small subset (~21%) of spontaneously active synapses appeared limited to this mode, most also mediated AP-evoked transmission and activity was highly correlated. Thus, by engaging overlapping molecular machinery, spontaneous transmission predicts AP-evoked transmission at single synapses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3