Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms

Author:

Kusch NinaORCID,Schuppert Andreas

Abstract

AbstractDrug sensitivity prediction models for human cancer cell lines constitute important tools in identifying potential driving factors of responsiveness in a pre-clinical setting. Integrating information derived from a range of heterogeneous data is crucial, but remains non-trivial, as differences in data structures may hinder fitting algorithms from assigning adequate weights to complementary information that is contained in distinct omics data. In order to counteract this effect that tends to lead to just one data type dominating supposedly multi-omics models, we developed a novel tool that enables users to train single-omics models separately in a first step and to integrate them into a multi-omics model in a second step. Extensive ablation studies are performed in order to facilitate an in-depth evaluation of the respective contributions of singular data types and of combinations thereof, effectively identifying redundancies and interdependencies between them. Moreover, the integration of the single-omics models is realized by a range of distinct classification algorithms, thus allowing for a performance comparison. Sets of molecular events and tissue types found to be related to significant shifts in drug sensitivity are returned to facilitate a comprehensive and straightforward analysis of potential drivers of drug responsiveness. Our two-step approach yields sets of actual multi-omics pan-cancer classification models that are highly predictive for a majority of drugs in the GDSC data base. In the context of targeted drugs with particular modes of action, its predictive performances compare favourably to those of classification models that incorporate multi-omics data in a simple one-step approach. Additionally, case studies demonstrate that it succeeds both in correctly identifying known key drivers of specific drug compounds as well as in providing sets of potential candidates for additional driving factors of drug sensitivity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3