MotiMul: A significant discriminative sequence motif discovery algorithm with multiple testing correction

Author:

Mori Koichi,Ozaki Haruka,Fukunaga Tsukasa

Abstract

AbstractSequence motifs play essential roles in intermolecular interactions such as DNA-protein interactions. The discovery of novel sequence motifs is therefore crucial for revealing gene functions. Various bioinformatics tools have been developed for finding sequence motifs, but until now there has been no software based on statistical hypothesis testing with statistically sound multiple testing correction. Existing software therefore could not control for the type-1 error rates. This is because, in the sequence motif discovery problem, conventional multiple testing correction methods produce very low statistical power due to overly-strict correction. We developed MotiMul, which comprehensively finds significant sequence motifs using statistically sound multiple testing correction. Our key idea is the application of Tarone’s correction, which improves the statistical power of the hypothesis test by ignoring hypotheses that never become statistically significant. For the efficient enumeration of the significant sequence motifs, we integrated a variant of the PrefixSpan algorithm with Tarone’s correction. Simulation and empirical dataset analysis showed that MotiMul is a powerful method for finding biologically meaningful sequence motifs. The source code of MotiMul is freely available at https://github.com/ko-ichimo-ri/MotiMul.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. JASPAR 2020: update of the open-access database of transcription factor binding profiles;Nucleic Acids Res,2020

2. Fitting a mixture model by expectation maximization to discover motifs in biopolymers;Proc. Int. Conf. Intell. Syst. Mol. Biol,1994

3. MEME SUITE: tools for motif discovery and searching

4. STEME: efficient EM to find motifs in large data sets

5. MOCCS: Clarifying DNA-binding motif ambiguity using ChIP-Seq data;Comput. Biol. Chem.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3