Phasic oxygen dynamics underlies fast choline-sensitive biosensor signals in the brain of behaving rodents

Author:

Santos Ricardo M.,Sirota Anton

Abstract

AbstractFast time-scale modulation of synaptic and cellular physiology by acetylcholine is critical for many cognitive functions, but direct local measurement of neuromodulator dynamics in freely-moving behaving animals is technically challenging. Recent in vivo brain measurements using choline oxidase (ChOx)-based electrochemical biosensors have reported surprising fast cholinergic transients associated with reward-related behavioral events. However, in vivo recordings with conventional ChOx biosensors could be biased by phasic local field potential and O2-evoked enzymatic responses. Here, we have developed a Tetrode-based Amperometric ChOx (TACO) sensor enabling minimally invasive artifact-free simultaneous measurement of cholinergic activity and O2. Strikingly, the TACO sensor revealed highly-correlated O2 and ChOx transients following spontaneous locomotion and sharp-wave/ripples fluctuations in the hippocampus of behaving rodents. Quantitative analysis of spontaneous activity, in vivo and in vitro exogenous O2 perturbations revealed a directional effect of O2 on ChOx phasic signals. Mathematical modeling of biosensors identified O2-evoked non-steadystate ChOx kinetics as a mechanism underlying artifactual biosensor phasic transients. This phasic O2-dependence of ChOx-based biosensor measurements confounds phasic cholinergic dynamics readout in vivo, challenging previously proposed ACh role in reward-related learning. The discovered mechanism and quantitative modeling is generalizable to any oxidase-based biosensor, entailing rigorous controls and new biosensor designs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3