Author:
Gorelick Alexander N.,Kim Minsoo,Chatila Walid K.,La Konnor,Hakimi A. Ari,Taylor Barry S.,Gammage Payam A.,Reznik Ed
Abstract
AbstractMitochondrial DNA (mtDNA) encodes essential protein subunits and translational machinery for four distinct complexes of oxidative phosphorylation (OXPHOS). Using repurposed whole-exome sequencing data, we demonstrate that pathogenic mtDNA mutations arise in tumors at a rate comparable to the most common cancer driver genes. We identify OXPHOS complexes as critical determinants shaping somatic mtDNA mutation patterns across tumor lineages. Loss-of-function mutations accumulate at an elevated rate specifically in Complex I, and often arise at specific homopolymeric hotspots. In contrast, Complex V is depleted of all non-synonymous mutations, suggesting that mutations directly impacting ATP synthesis are under negative selection. Both common truncating mutations and rarer missense alleles are associated with a pan-lineage transcriptional program, even in cancer types where mtDNA mutations are comparatively rare. Pathogenic mutations of mtDNA are associated with substantial increases in overall survival of colorectal adenocarcinoma patients, demonstrating a clear functional relationship between genotype and phenotype. The mitochondrial genome is therefore frequently and functionally disrupted across many cancers, with significant implications for patient stratification, prognosis and therapeutic development.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献