Deep-learning and transfer learning identify new breast cancer survival subtypes from single-cell imaging data

Author:

Yadav Shashank,Zhou Shu,He Bing,Du Yuheng,Garmire Lana X

Abstract

ABSTRACTQuantitative models that explicitly capture single-cell resolution cell-cell interaction features to predict patient survival at population scale are currently missing. Here, we computationally extracted hundreds of features describing single-cell based cell-cell interactions and cellular phenotypes from a large, published cohort of cyto-images of breast cancer patients. We applied these features to a neural-network based Cox-nnet survival model and obtained high accuracy in predicting patient survival in test data (Concordance Index > 0.8). We identified seven survival subtypes using the top survival features, which present distinct profiles of epithelial, immune, fibroblast cells, and their interactions. We identified atypical subpopulations of TNBC patients with moderate prognosis (marked by GATA3 over-expression) and Luminal A patients with poor prognosis (marked by KRT6 and ACTA2 over-expression and CDH1 under-expression). These atypical subpopulations are validated in TCGA-BRCA and METABRIC datasets. This work provides important guidelines on bridging single-cell level information towards population-level survival prediction.STATEMENT OF TRANSLATIONAL RELEVANCEOur findings from a breast cancer population cohort demonstrate the clinical utility of using the single-cell level imaging mass cytometry (IMC) data as a new type of patient prognosis prediction marker. Not only did the prognosis prediction achieve high accuracy with a Concordance index score greater than 0.8, it also enabled the discovery of seven survival subtypes that are more distinguishable than the molecular subtypes. These new subtypes present distinct profiles of epithelial, immune, fibroblast cells, and their interactions. Most importantly, this study identified and validated atypical subpopulations of TNBC patients with moderate prognosis (GATA3 over-expression) and Luminal A patients with poor prognosis (KRT6 and ACTA2 over-expression and CDH1 under-expression), using multiple large breast cancer cohorts.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Keratins 6, 16, and 17 in Health and Disease: A Summary of Recent Findings;Current Issues in Molecular Biology;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3