A frequency peak at 3.1 kHz obtained from the spectral analysis of the cochlear implant electrocochleography noise

Author:

Herrada Javiera,Medel VicenteORCID,Dragicevic ConstantinoORCID,Maass Juan C.,Stott Carlos E.,Delano Paul H.ORCID

Abstract

AbstractIntroductionThe functional evaluation of auditory-nerve activity in spontaneous conditions has remained elusive in humans. In animals, the frequency analysis of the round-window electrical noise recorded by means of electrocochleography yields a frequency peak at around 900 to 1000 Hz, which has been proposed to reflect auditory-nerve spontaneous activity. Here, we studied the spectral components of the electrical noise obtained from cochlear implant electrocochleography in humans.MethodsWe recruited adult cochlear implant recipients from the Clinical Hospital of the Universidad de Chile, between the years 2021 and 2022. We used the AIM System from Advanced Bionics® to obtain single trial electrocochleography signals from the most apical electrode in cochlear implant users. We performed a protocol to study spontaneous activity and auditory responses to 0.5 and 2 kHz tonesResultsTwenty subjects including 12 females, with a mean age of 57.9 ± 12.6 years (range between 36 and 78 years) were recruited. The electrical noise of the single trial cochlear implant electrocochleography signal yielded a reliable peak at 3.1 kHz in 55% of the cases (11 out of 20 subjects), while an oscillatory pattern that masked the spectrum was observed in seven cases. In the other two cases, the single-trial noise was not classifiable. Auditory stimulation at 0.5 kHz and 2.0 kHz did not change the amplitude of the 3.1 kHz frequency peak.ConclusionWe found two main types of noise patterns in the frequency analysis of the single-trial noise from cochlear implant electrocochleography, including a peak at 3.1 kHz that might reflect auditory-nerve spontaneous activity, while the oscillatory pattern probably corresponds to an artifact.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3