Abstract
AbstractThe Rho family of GTPases plays a crucial role in cellular mechanics, by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in theDrosophilalarval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, that in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 diffuse to the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.
Publisher
Cold Spring Harbor Laboratory