Construction and reconfiguration of dynamic DNA origami assemblies with coiled-coil patches and patterns

Author:

Teng T.,Bernal-Chanchavac J.,Stephanopoulos N.ORCID,Castro C.E.ORCID

Abstract

AbstractDNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structure and properties. Here we report the integration of DNA origami hinge nanodevices and coiled-coil peptides into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, we make multiple higher order assemblies by organizing clusters of peptides (i.e. patches) or arranging single peptides (i.e. patterns) on the surfaces of DNA origami to control the relative orientation of devices. We use coiled-coil interactions to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based actuation. Actuation of linear assemblies leads to micron scale motions and ∼2.5-10-fold increase in bending stiffness. Our results provide a foundation for stimulus responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3