Artificial neural networks for model identification and parameter estimation in computational cognitive models

Author:

Rmus Milena,Pan Ti-Fen,Xia Liyu,Collins Anne G. E.

Abstract

1AbstractComputational cognitive models have been used extensively to formalize cognitive processes. Model parameters offer a simple way to quantify individual differences in how humans process information. Similarly, model comparison allows researchers to identify which theories, embedded in different models, provide the best accounts of the data. Cognitive modeling uses statistical tools to quantitatively relate models to data that often rely on computing/estimating the likelihood of the data under the model. However, this likelihood is computationally intractable for a substantial number of models. These relevant models may embody reasonable theories of cognition, but are often under-explored due to the lack of tools required to relate them to data. We propose to fill this gap using artificial neural networks (ANNs) to map data directly onto model identity and parameters, bypassing the likelihood estimation. Our results show that we can adequately perform both parameter estimation and model identification using our new ANN approach, including for models that cannot be fit using traditional likelihood-based methods. Our new ANN approach will greatly broaden the class of cognitive models researchers can quantitatively consider.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , et al. (2016). {Tensorflow}: A system for {large-scale} machine learning. 12th USENIX symposium on operating systems design and implementation (OSDI 16), 265–283.

2. Akaike, H . (1998). Information theory and an extension of the maximum likelihood principle. Selected papers of hirotugu akaike, 199–213.

3. Mice alternate between discrete strategies during perceptual decision-making

4. Baribault, B. , & Collins, A. G . (2023). Troubleshooting bayesian cognitive models. Psychological Methods.

5. Bergstra, J. , Yamins, D. , & Cox, D . (2013). Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. International conference on machine learning, 115–123.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3